

Internal Revenue Service

JAVA Secure Coding
Guidelines for Most
Common IRS
Vulnerabilities
Final

Java Application Standard Section: OS:IT:AD:TIO:ASQ:JAS
5/25/2017

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

1

Table of Content

Introduction ..3

1. Cross-site scripting (XSS) ...4

1.1 How to detect XSS vulnerability .. 4

1.2 How to prevent XSS vulnerability ... 4

1.3 Available Tools/JAVA libraries for XSS .. 4

1.4 Examples ... 4

2. System Resource Leaks ...7

2.1 How to detect SRL vulnerability .. 7

2.2 How to prevent system resource leaks ... 7

2.3 Available Tools .. 7

2.4 Examples ... 7

3. Sensitive Data Exposure ..9

3.1 How to detect SDE vulnerability ... 9

3.2 How to prevent Sensitive Data Exposure ... 9

3.3 Available JAVA libraries for Cryptography ... 9

3.4 Examples ... 10

4. Insecure Direct Object Reference .. 11

4.1 How to detect IDOR vulnerability ... 11

4.2 How to prevent insecure direct object reference ... 11

4.3 Available Tools/Libraries ... 11

4.4 Examples ... 12

5. SQL Injection .. 13

5.1 How to detect SQL injection ... 13

5.2 How to prevent SQL injection ... 13

5.3 Recommendations & Samples .. 13

6. Broken Authentication and Session Management .. 16

6.1 How to detect Broken Authentication and Session Management ... 17

6.2 How to prevent Broken Authentication and Session Management ... 17

6.3 Available tools/Libraries ... 18

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

2

6.4 Examples ... 18

7. Cross-Site Request Forgery (CSRF) ... 21

7.1 How to Detect Cross-Site Request Forgery (CSRF) ... 21

7.2 How to Prevent Cross-Site Request Forgery (CSRF) .. 21

7.3 Available Tools/Libraries ... 22

7.4 Examples ... 22

8. Defective third party libraries ... 24

9. Other Vulnerabilities .. 25

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

3

Introduction

Secure coding is very broad topic. In this document, we mainly focus on 8 most common vulnerabilities

in IRS and aim to provide guideline, detection, prevention and references for every vulnerability. There

are many general mitigation and prevention methods applicable to all these common vulnerabilities, like

top 10 secure coding practices. In this document, we provide more specific guidance for 8 most common

vulnerabilities found by AppScan in IRS.

https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

4

1. Cross-site scripting (XSS)

Cross-site scripting (XSS) is a security vulnerability often found in web applications. XSS flaws occur

whenever an application takes untrusted client-supplied data and sends it to a web browser without

validating or encoding that content. XSS usually is utilized by attackers to inject malicious client-side

scripts into web pages viewed by different end user. XSS are generally classified into three types:

reflected XSS, stored XSS and DOM-based XSS.

1.1 How to detect XSS vulnerability

 Code Review: The most efficient way to find XSS vulnerability is to perform code review

and thoroughly examine all spots where malicious input can be injected into the HTML

output.

 Tools: Nessus, Nikto, and other similar tools can help scan a website for XSS flaws.

1.2 How to prevent XSS vulnerability

Developers can largely eliminate XSS through sanitizing input and encoding all variable output in a

web page before sending it to the end user’s browser. OWASP provides the following more detail

check lists for mitigating XSS vulnerability:

 XSS (Cross Site Scripting) Prevention Cheat Sheet

 DOM based XSS Prevention Cheat Sheet

1.3 Available Tools/JAVA libraries for XSS

 Testing for Reflected XSS

 Testing for Stored XSS

 Testing for DOM-based XSS

 OWASP JAVA Encoder library may help contextual encoding.

 OWASP HTML Sanitizer may help detecting XSS vulnerability introduced by third party.

 OWASP AntiSamy is a library for HTML and CSS encoding.

 OWASP ESAPI is a security control library that makes it easier for programmers to write

lower-risk applications.

 Content Security Policy (CSP) is a security mechanism that helps protect against Cross

Site Scripting (XSS).

1.4 Examples

https://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OWASP-DV-001)
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OWASP-DV-002)
https://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OWASP-DV-003)
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://w3c.github.io/webappsec-csp/

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

5

 XSS in JSF

Noncompliant Code Example: The only potential XSS attack hole is explicitly set escape=”false”

<h:outputText value="#{user.name}" escape="false" />

Compliant Code Example: JSF has built-in XSS prevention. It is safe to display all user input in any JSF

component, which are all implicitly escaped.

<h:inputText value="#{user.name}" />
<h:outputText value="#{user.name}" />

In JSF 2.X, it is also safe to use EL in web page like :

<p>Welcome, #{user.name}</p>

 User Input HTML tag

If web app needs to allow users to utilize some of the basic html tags to customize their inputs,

JBoss Seam provides a <s:formattedText/> tag that allows some basic html tags and styles specified

by users, which validate and escape user's inputs by default. See Seam Reference Manual for detail.

 Server Side Encoding

Noncompliant Code Example: Direct put user input in response is a potential attack hole:

response.write("" + user_input + "");

Compliant Code Example: Filter/sanitize and encode user input is essential to prevent XSS attack.

response.write("" + escapePlainTextToHtml(user_input) + "")

 XSS in JSP

Using JSTL <c:out> tag or fn:escapeXml() EL function when (re)displaying user-controlled input

<p><c:out value="${bean.userControlledValue}"></p>

<p><input name="foo"

http://docs.jboss.org/seam/2.2.1.CR1/reference/en-US/html/text.html

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

6

value="${fn:escapeXml(bean.userControlledValue)}"></p>

An alternate way to prevent XSS in JSP is to migrate JSP to JSF.

 Content Security Policy (CSP)

Content Security Policy (CSP) is a security mechanism that helps protect against Cross Site Scripting

(XSS). CSP defines Content-Security-Policy HTTP header that allows web apps instruct the browser a

whitelist of where it can load resources from, whether the browser can use inline styles or scripts.

Example of simple usage, only use script from same site:

Content-Security-Policy: script-src 'self'

https://w3c.github.io/webappsec-csp/

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

7

2. System Resource Leaks

System Resource Leaks (SRL) vulnerability occurs when an application does not properly release the

resources it acquired. This vulnerability can significantly slow down the app performance and cause app

instability. SRL is often used by denial of service attack to cause serious computational resource

exhaustion such as bandwidth, memory, disk space and processor time.

2.1 How to detect SRL vulnerability

SRL errors are generally caused by programming. Good code preview may mitigate the risks.

Typical resource leaks are memory leak and file handle leak. A good sign for memory leaking is the

app runs fast at first and slows down over time.

2.2 How to prevent system resource leaks

 Check each resource app acquired and release it explicitly after acquisition.

 Allocate enough resources to meet demand traffic flow

 Classes implementing the interface java.io.Closeable (since JDK 1.5) and

java.lang.AutoCloseable (since JDK 1.7) should be closed explicitly using method close() when

they are no longer needed.

 Input into a system should be validated/checked to avoid excessive resource consumption.

Recommend reading Secure Coding Guideline: Denial of Service.

2.3 Available Tools

Memory analyzer plugin(MAT) from Eclipse helps identify memory leak suspects

VirtualVM helps monitor and find memory leaks.

JRockit from Oracle help analyze runtime performance and detect memory leaks.

2.4 Examples

 Since JAVA SE 7, use try-with-resources statement to ensure closing resources

http://www.oracle.com/technetwork/java/seccodeguide-139067.html#1
http://www.eclipse.org/mat/downloads.php
http://visualvm.java.net/intro.html
http://www.oracle.com/us/technologies/java/standard-edition/jrockit/overview/index.html

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

8

public static Object[] fromFile(String filePath) throws
FileNotFoundException, IOException
{
 int sz = /* get buffer size somehow */
 try (FileReader file = new FileReader(filePath);
 BufferedReader br = new BufferedReader(file, sz))
 {
 return read(br);
 }
}

In the above example, the resource declared in the try-with-resources are FileReader and

BufferedReader, which will be closed whether the try statement completes normally or

abruptly.

 Prior to JAVA SE 7, Deallocation of resources is preferably done in a finally{} instead of in

finalize{}

public static Object[] fromFile(String filePath) throws FileNotFoundException, IOException
{
 BufferedReader br = null;

 try
 {
 br = new BufferedReader(new FileReader(filePath));
 return read(br);
 }
 catch (Exception ex)
 {
 throw ex;
 }
 finally
 {
 try
 {
 if (br != null) br.close();
 }
 catch(Exception ex)
 {
 }
 }

 return null;

}

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

9

3. Sensitive Data Exposure

Sensitive date exposure (SDE) vulnerabilities can occur when an application does not properly protect

sensitive information from being disclosed to attackers.

3.1 How to detect SDE vulnerability

Extra protection is needed for sensitive data like credit card numbers, personally identifiable

information, medical records, tax information etc. The following checklist may help to find out if the

application is vulnerable to SDE attack:

 Is this data stored in plain text?

 Is this data transmitted in clear text, internally or externally?

 Are any old / weak or in-house developed cryptographic algorithms used?

 Are weak crypto keys generated, or is proper key management or rotation missing?

 Are any browser security directives or headers missing when sensitive data is provided by / sent
to the browser?

 And more …

3.2 How to prevent Sensitive Data Exposure

Following OWASP guideline, for all sensitive data, do all of the following, at a minimum:

 Encrypt all sensitive data and passwords

 Providing transport layer protection with TLS, refer to NIST 800-52

 Utilize public trusted algorithms/libraries, avoid in-house developed code for

cryptographic functionality, refer to NIST 800-52 .

 Choose strong algorithms and strong keys, and proper key management. Consider using

FIPS 140 validated cryptographic modules.

 Ensure passwords are stored with an algorithm specifically designed for password

protection, such as bcrypt, PBKDF2, or scrypt.

 Turn off autocomplete fields on forms collecting sensitive data and disable caching for

pages that contain sensitive data.

 Provide strong cryptographic functionality, follow OWASP cheat sheet to insure proper

protection.

3.3 Available JAVA libraries for Cryptography

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Scrypt
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

10

 Java security package provides comprehensive coverage for essential cryptographic

functionality.

 Spring security module provides bcrypt and scrypt algorithms.

3.4 Examples

 Generate a secure password

String password=”password”;
MessageDigest md =
MessageDigest.getInstance("PBKDF2WithHmacSHA1");

SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");
byte[] salt = new byte[16];
sr.nextBytes(salt);
md.update(salt);
byte[] newpassword=md.digest(password);

 Key generation

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA”);
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
keyGen.initialize(1024, random);
KeyPair keypair = keyGen.generateKeyPair();
PrivateKey private_key = pair.getPrivate();
PublicKey public_key = pair.getPublic();

 Encrypt Data with public key

Cipher cipher = Cipher.getInstance(“RSA”);
cipher.init(Cipher.PUBLIC_KEY, public_key);
byte[] encryptedBytes = cipher.doFinal(Your_DATA_NEED_BE_ENCRYPTED);

 Decrypt Data with private key

Cipher cipher = Cipher.getInstance(“RSA”);
cipher.init(Cipher.PRIVATE_KEY, private_key);
byte[] decryptedBytes = cipher.doFinal(Your_DATA_NEED_BE_DECRYPTED);

http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

11

4. Insecure Direct Object Reference

An insecure direct object reference (IDOR) occurs when unauthorized users/attackers can access a direct

object reference, which could be an internal implementation object, such as files, directories or

database records. This may result in significant impact on an organization information leakage

depending on the type of exposed data during the attack.

4.1 How to detect IDOR vulnerability

Questions to ask developers:

 Does each field, where a user can supply input and may point directly to reference objects, have

sufficient authorization checks?

 Is it possible to access resources belonging to other users or bypass authorization using different

URL parameters or different login credentials?

4.2 How to prevent insecure direct object reference

 To prevent these vulnerabilities, authentication/authorization policies must be in place and

thoroughly enforced.

 According to OWASP, the first checkpoint of this vulnerability is to “map out all locations in the

application where user input is used to reference objects directly”.

 Applications need validate all user inputs.

 Verify user authorization each time sensitive objects/files/contents are requested

 If reference is indirect, the mapping to the direct reference must be restricted to the authorized

current user.

 Indirect reference map may add an extra layer to the app’s security.

 minimize user ability to predict object IDs/Names

 Don’t expose the actual ID/name of objects

 Code review and website walkthrough may be done to prevent this vulnerability.

4.3 Available Tools/Libraries

ESAPI (The OWASP Enterprise Security API) is a free, open source, web application security control

library that makes it easier for programmers to write lower-risk applications.

https://www.owasp.org/index.php/Testing_for_Insecure_Direct_Object_References_(OTG-AUTHZ-004)
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

12

4.4 Examples

 Exploiting URL parameters

The attacker simply modifies URL parameters in the browser to access unauthorized data.

The following example shows attacker accesses another user account by changing parameter

account in URL string.

http://demo.com/account?account=not-my-account

If the corresponding server-side code (like below) doesn’t perform user verification, the

attacker an access any user’s account

String query = "SELECT * FROM accts WHERE account = ?";
PreparedStatement pstmt = connection.prepareStatement(query);

pstmt.setString(1, request.getParameter("account"));
ResultSet results = pstmt.executeQuery();
….
//return results to UI

 Indirect Reference Map

Indirect reference map is used for converting from a set of internal direct object references

(i.e. user IDs, filenames, database keys) to a set of indirect reference that can be safely exposed

to the public. Using a random generated string instead of straight object property makes it hard

for hackers to guess real identifiers.

MyFileObject myFile ;

 // generate my own object
myFile =…..;

AccessReferenceMap map = new RandomAccessReferenceMap();

 // store the map somewhere safe - like the session!
 String indRef = map.getIndirectReference(myFile);

 String href = "http://www.demo.com/accessFile?file=" + indRef);
 ...
//retrieve
String indref = request.getParameter("file");

 MyFileObject file = (MyFileObject)map.getDirectReference(indref);

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

13

5. SQL Injection

SQL (Structured Query Language) injection is a common application security flaw that allows an attacker

to inject (execute) SQL commands in an application. It is on OWASP top 10 list and one of the most

widespread and dangerous application vulnerability. In general, the input can come from any HTML

based form that submits parameters that are processed by a backend application that relies on a

database .

5.1 How to detect SQL injection

Comprehensive detection of SQL injection attacks is a difficult task. Web server log auditing combined

with network Intrusion Detection Systems (IDS) can help finding SQL injection. Various software tools

exist that allow for the rapid search of webserver logs for specified keywords or regular expressions.

such as "EXEC", "POST", "UNION", "CAST", or a single quotation mark, which should not normally be

provided by the end users. Besides these, attackers also can exploit the whitespace between commands,

encode using HEX, BASE 64 etc. in order to bypass IDS detection or log-based analysis.

5.2 How to prevent SQL injection

 Disable potentially harmful SQL stored procedure calls

 Use parametrized SQL query

 Document all database accounts, stored procedures/functions and prepared statements along

with their use

 Harden network setting, implementing firewall rules to block or restrict external and internal

database access.

 Secure the operating system and applications, using principles of least privilege

 More detail see OWASP SQL Injection Prevention Cheat Sheet

5.3 Recommendations & Samples

• Use of prepared statement with bind variables

Vulnerable Usage

Statement stmt = connection.createStatement ();
String query = "SELECT users FROM user_table WHERE user_name =?”

http://vsnsc20vp003143.ds.irsnet.gov/Altiris/SoftwarePortal/UserPortal/Home.aspx

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

14

Malicious user input

Joe or ‘1’=’1’

Exploit

SELECT users FROM user_table WHERE user_name = Joe or ‘1’=’1’ will return/divulge list of all

users from the table.

Secure Usage

PreparedStatement pstmt = connection.prepareStatement (query);
pstmt.setString (1, user_name);

• Use parameterized query instead of dynamic SQL inside the stored procedures

Vulnerable Usage

CREATE PROCEDURE getUserID
 @name VARCHAR (50)
AS
 EXEC ('SELECT user_id FROM users WHERE user_ name = '''+@name+ '''')
RETURN

Malicious user input

xxx' AND 'a'='b' UNION SELECT password FROM users WHERE
user_name='admin

Exploit

'SELECT user_id FROM users WHERE user_name = '''xxx' AND 'a'='b' UNION
SELECT password FROM users WHERE user_name='admin''''

The above SQL will return password for administrator

Secure Usage

CREATE PROCEDURE getUserID
 @name VARCHAR (50)
AS
 EXEC('SELECT user_id FROM users WHERE user_ name = :input’;)
RETURN

• For Hibernate HQL, avoid using deprecated session.find () method

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

15

Vulnerable Usage

Salary salary = (Salary) session.find (“from org.example.Salary as salary where
user.id=” +
userIds.get (i));

 The above HQL will allow injection attacks from userId’s

Malicious user input

= Joe_id or ‘1’=’1’

Exploit

Joe_id or ‘1’=’1’ will return salaries of all users from salary table.

Secure Usage

int userId = userIds.get (i);
Salary salary = (Salary) session.find (“from org.example.Salary as salary where
user.id=?”, userId, StringType);

References

OWASP: https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

MITRE: https://capec.mitre.org/data/definitions/66.html

Secure Coding Guidelines 3-2 -- http://www.oracle.com/technetwork/java/seccodeguide-

139067.html#3

CERT guidelines -- https://www.securecoding.cert.org/confluence/display/java/IDS00-

J.+Prevent+SQL+injection

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://capec.mitre.org/data/definitions/66.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#3
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#3
https://www.securecoding.cert.org/confluence/display/java/IDS00-J.+Prevent+SQL+injection
https://www.securecoding.cert.org/confluence/display/java/IDS00-J.+Prevent+SQL+injection

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

16

6. Broken Authentication and Session Management

Application functions related to authentication and session management, if not implemented correctly,

can allow visibility to unauthorized information. This can result in compromise of passwords, tokens,

cookies or other information that can allow the attacker to impersonate the user. Types of broken

authentication and session management attacks are:

Session Fixation Attack

Session Hijacking

Brute Force Attack (Password Management)

Replay Attack

Insufficient Session Expiration

• Session Fixation Attack

In Session Fixation attack, the user is “fixated” or tagged with a session ID that is already known by

attacker. The known session ID (generated by attacker) could be distributed to the victim(s) using a

phishing link in email. Once the user logs in successfully to the trusted site, the attacker is able to

impersonate the user using the known session ID.

• Session Hijacking

The Session Hijacking Attack is an attack in which the attacker tries to get the user’s session ID and then

use that session ID for his own session impersonating the victim. Session Hijacking is almost identical to

Session Fixation except that in Session Hijacking the user’s session ID is not known before the attack.

• Brute Force Attack (Password Management)

Brute Force Attacks (Password Management) Brute Force attacks occur when an attacker is able to

repeatedly guess or identify unauthorized information such as usernames, passwords, operations, etc.

from an application.

• Replay Attack

The Replay Attack is an attack in which the user’s browser communication is being listened to by an

attacker. This communication is captured in some manner and then played again or “replayed” so that

the attacker masquerades as the legitimate user. The Replay attack is also known as a man-in-the-

middle attack. There are numerous techniques that an attacker can use to eavesdrop on users. Such

techniques include IP packet sniffing and substitution, keystroke capturing even if the traffic is

encrypted, and cookie-stealing via proxy

• Insufficient Session Expiration

Insufficient Session Expiration occurs when a web site allows an attacker to reuse old session data

(credentials, session ID’s etc.) for access. This increases a web site’s exposure to attacks that steal or

impersonate other user. A long expiration time increases an attacker’s chance of successfully guessing a

valid session ID.

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

17

6.1 How to detect Broken Authentication and Session Management

 Code Review and Pen Testing: Both code review and penetration testing can be used to

diagnose authentication and session management problems. Carefully review each

aspect of your authentication mechanisms to ensure that user's credentials are

protected at all times, while they are at rest (e.g., on disk), and while they are in transit

(e.g., during login). Review every available mechanism for changing a user's credentials

to ensure that only an authorized user can change them. Review your session

management mechanism to ensure that session identifiers are always protected and are

used in such a way as to minimize the likelihood of accidental or hostile exposure.

 Tools: AppScan

6.2 How to prevent Broken Authentication and Session Management

 User Logins

Always use encrypted forms for user login.

Validate form input.

Avoid using remember me functionality with mission critical applications.

Provide users with a logout button to manually terminate a session

 Password Policies

Don’t use verbose error messages (e.g. invalid username, account does not exist)

Use strong passwords: length and complexity (alphanumeric with special

characters)

Use password aging: passwords expire after a specific time forcing users to

change it

Don’t allow use of previous passwords when renewing the password.

Lockout the account after a minimum login threshold is reached

Store hashed passwords (versus plaintext) using a salt to prevent rainbow table

attacks.

Provide two-step authentication features

Implement strong complex password requirements

Notify users for any modifications to password.

 Session Control

Expire a session token after a predefined period of time

Expire a session token after a predefined period of activity

Expire a session token when users logs out. The browser cookies should be

deleted and user’s session object on the server should be destroyed.

Use strong random number generators to ensure you have a sufficiently long

session Id

Store session ids in cookies and never pass them via URL parameters, hidden

form fields, or custom HTTP headers

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

18

Use standard frameworks to handle security rather than writing your own

custom session management systems

Set absolute time limits on session identifiers to ensure proper session

expiration

 Cookie Security

Store session identifiers in session cookies rather than persistent cookies.

Set Secure cookie attribute to ensure such are transmitted over secure

connections.

Set HttpOnly cookie to ensure scripts cannot access these cookies via DOM

object.

6.3 Available tools/Libraries

http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html API to generate

cryptographically strong random and unpredictable session ID.

6.4 Examples

Vulnerable Usage

Cookies remain the same (are not modified) after login is successful (e.g. JSESSIONID)

Exploit

Session cookie can be used by attacker to impersonate the real user

Secure Usage

Change JSESSIONID cookie before and after login:

//Issue is same session object is being used so get current session
HttpSession beforeloginsession = request.getSession();
//invalidate that session
 beforeloginsession.invalidate();
//Generate a new session, new JSESSIONID
HttpSession afterloginsession = request.getSession(true);

Vulnerable Usage

Cookie value is sent unencrypted in clear text

Exploit

Session cookie can be used by attacker to impersonate the real user

Secure Usage

Use HTTPOnly and Secure flags

Configurations for the setting of the HTTPOnly and Secure flags are generally handled in the

configuration of the web application, application server as well as the client browser. Be sure

your browser is up-to-date as well.

Setting of HTTPOnly Flag in web application configuration file

http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

19

<web-app>
<session-config>
<cookie-config>
<!--
session tracking cookies created by this application will be marked as HttpOnly
-->
 <http-only>true</http-only>
</cookie-config>
 </session-config>
</web-app>

HTTPOnly Flag setting using Java API

Cookie cookie = getClientCookie("clientCookieName");
cookie.setHttpOnly(true);

Setting of Secure Flag in web application configuration file

<web-app>
<session-config>
<cookie-config>
<!--
Any session tracking cookies created by this application will be marked as
HttpOnly
-->
 <secure>true</secure>
</cookie-config>
 </session-config>
</web-app>

Vulnerable Usage

Cookie value is predictable (e.g. using incremental counter)

Exploit

Session cookie can be used by attacker to impersonate the real user

Secure Usage

Ensure the Session ID that your web application creates is user-unique and unpredictable. This is

usually accomplished with the use of the SecureRandom class in

Java(java.security.SecureRandom).

See http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html for more

details. Do not rely on using a timestamp as this has proven to be predictable. Also, do not use

the Random class(java.util.Random)in Java for the creation of your session tokens. The API

clearly states to not do this:“Instances of java.util.Random are not cryptographically secure.”See

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html for more details.

Vulnerable Usage

http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

20

Cookie value/Session ID value is visible

Exploit

Session cookie can be used by attacker to impersonate the real user

Secure Usage

Don’t put session IDs in the URL.

Don’t hardcode credentials in configuration files or inside the code.

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

21

7. Cross-Site Request Forgery (CSRF)

CSRF is the use of a forged session data stolen by an attacker. The victim is tricked into issuing a request

to an attacker-controlled website without the victim's knowledge. The authentic website has a CSRF

vulnerability (lack of CSRF token), the attacker is able to use for forged session to masquerade as

legitimate user.

7.1 How to Detect Cross-Site Request Forgery (CSRF)

 Code Review: The easiest way to check whether an application is vulnerable is to see if

each link and form contains an unpredictable token for each user. Without such an

unpredictable token, attackers can forge malicious requests. Focus on the links and

forms that invoke state-changing functions, since those are the most important CSRF

targets.

 Tools: AppScan

 Monitoring Events: Mismatch of token value or non-existent of a Session object should

abort request; log message as potential CSRF attack and Alert or notify production

support

7.2 How to Prevent Cross-Site Request Forgery (CSRF)

 Anti-CSRF Tokens

The Enterprise Security API (ESAPI) from OWASP offers anti-CSRF tokens in their library.

Using this API, the developer can generate anti-CSRF tokens on the server-side and

append the token to each response given to an authenticated user. The user’s session

stores the token and, upon each subsequent request, sends that token as a hidden field.

Upon receiving the request, there is a comparison of the anti-CSRF token value from

the client to the expected value stored on the server-side. As long as the client’s token

matches what the server expects, the session remains active. However, if there is a

mismatch, the session can, immediately, be invalidated

Generate token on server-side

// Generate a random string
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

Place into hidden field of web page within Response and in Session object as an
attribute:
<input type=’hidden’ name=’“+ CSRFTokenUtil.SESSION_ATTR_KEY +”’ value=’”
+ getToken() + ”’/>”;

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

22

After receipt of token from subsequent request, validate on server-side:

IF [gen_token_in_req_matches]
THEN
[continue]
 ELSE
[log_error_unacceptable_token_value_received]
 END-IF.
request.getParameter(SESSION_ATTR_KEY) == getToken()

 Require users to re-authenticate when performing critical sensitive operations

 Have strong measures for re-authentication such as Captcha, 2 step verification

processes

 Multiple Browser Tabs

Having multiple browser tabs open at the same time allows the availability of

authenticated session information in those tab from one browser. End users should

always click “Logout” to invalidate their authenticated cookies as well as close their

browsers once done.

7.3 Available Tools/Libraries

CSRF Guard: https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project

ESAPI: https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

7.4 Examples

• Use of secure random token per request

Vulnerable Usage

 Creation of a new user

<form method="POST" action="http://www.example.com/create_new_user">
 <input type="hidden" name="user_id" value="my_user">
 <input type="hidden" name="password" value="my_password">
</form>

 Transfer of funds

 http://bank.com/transferfunds?account=real_user&Amount=10000

Malicious user input

https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://bank.com/transferfunds?account=real_user&Amount=10000

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

23

Both of above examples are lacking identification from the client. This allows submission of a

form (to create users) or submission of a GET request (to transfer funds) without any unique

identifier to qualify the sender of the request; meaning, there is no evidence to support that the

sender is the intended party instead of an impostor. The application on server does not validate

the requester of the action (form submission/GET request) in any way.

Exploit

Creation of a new user allows hacker to create user accounts on website

<form method="POST" action="http://www.example.com/create_new_user">
<input type="hidden" name="user_id" value="hacker_userid">
<input type="hidden" name="password" value="hacker_password">
</form>
<script> document.usr_form.submit(); </script>

 Transfer of funds allows hacker to transfer funds to a different account

 http://bank.com/transferfunds?account=hacker_user&Amount=10000

http://bank.com/transferfunds?account=hacker_user&Amount=10000

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

24

8. Defective third party libraries

 Never trust third party libraries.

 All third party libraries must be scanned, sanitized and approved by IRS before use.

JAVA Secure Coding Guidelines for Most Common
IRS Vulnerabilities

 2017

25

9. Other Vulnerabilities

Java application vulnerabilities are moving targets and will be long-term battle. As more and more free

and commercial tools have been developed to combat these security issues, a widespread vulnerability

may drop into an uncommon one and new one may emerge any time. One OWASP released 2017 Top

10 vulnerabilities, two new vulnerabilities are reported: Under-protected APIs and Insufficient Attack

Protection.

This guideline provides basic information for current most common vulnerabilities in IRS and related

mitigation strategies. Every development team/section should keep coding guideline in mind to build

safe and solid IRS JAVA applications.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2017_Release_Candidate
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2017_Release_Candidate

